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A procedure for calculating the concentration in the bottom zone of a flat-bottom 
side cavity of a conduit during the replacement of one gas by another is developed 
on the basis of experimental data. The procedure entails the determination of the 
volumetric flow rates between the gas in the cavity and the gas moving along the 
main conduit. It is shown that a significant intensification of mass transfer is 
observed in comparison with pure diffusion transfer for values of the dimension- 
less group Re1"2Sc~163 -~ > 102 . 

Mass transfer between a gas situated in a flat-bottom side cavity of a conduit and a gas 
moving along the conduit itself is encountered in a number of engineering and technical prob- 
lems. In [1-3] it is shown theoretically and experimentally that the two dimensional 
problem of fluid flow around a deep rectangular cavity is accompanied by the formation of a 
system of vortices, which decay with depth. It is obvious that the convective mass transfer 
between the flat-bottom cavity and the external flow is determined by the strength of these 
vortices and, hence, by the external flow velocity. Presser [4] has investigated convective 
mass transfer from three-dimensional cavities of various configurations and depths. The mass- 
transfer rate was determined from the change in weight of naphthalene and paradichlorobenzene 
deposited on thecavity wall during their sublimation into the flow. The results are displayed 
in the form of dimensionless groups: Sh=/(~e, Sc), I02~Re~I0 ~ 

It was established that significant intensification of mass transfer between the flat- 
bottom cavity and the main flow is observed for Re > 2"103 . The mass-transfer coefficient in- 
creases at about half the rate for Re > 104 The investigations were carried out for flat- 
bottom cavities with depths of 0.5 to 3 times the diameter. However, the investigation was 
limited to a relatively shallow depth (s = 0.5 for cylindrical flat-bottom cavities) in the 
above-indicated range of rapid increase in mass transfer (2"103 ~ Re < 104). For flat-bottom 
cavities with depths of i, 2, and 3 times the diameter, mass-transfer data are given only for 
Re > 104. 

Mass transfer between an airflow in a duct and naphthalene situated on the bottom of a 
cylindrical cavity with a depth of 0 to 2 times the diameter has been investigated [5]. The 
value of the number Re in relation to the cavity diameter was varied from 9030 to 88,300. The 
data of [4, 5] are in good agreement in the intersecting ranges of the parameters (Re > 102 , 
0.5 ~ s ~ 2), despite certain differences in the experimental procedures (the naphthalene 
was sublimated from the entire surface of the cylinder in [4] and only from the bottom in [5]). 
This situation can be attributed to the fact that the "hydrodynamic" component, i.e., the 
volumetric flow rate between the cavity and the conduit, is a bottleneck that limits mass 
transfer. 

Here we investigate the time variation of the concentration of a gas that initially fills 
up the entire flat-bottom cavity. In this perspective the statement of the problem differs 
considerably from [4, 5], but straightforward calculations can be used to reduce the results 
of the present study and those of [4, 5] to a unified relation between dimensionless groups. 

We consider the problem for the case of indefinitely small gas velocities in the main 
conduit (u + 0). We assume that the external flow does not introduce any perturbations into 
the region of the flat-bottom cavity in this case. These conditions reduce the mass transfer 
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Fig. I. Schematic diagram of the diffusion problem: 
A) external region filled with gas A; B0 flat-bottom 
cavity region filled with gas B; s depth of cavity; 
d) diameter of cavity; u) external flow velocity; 
z) coordinate axis. 
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Fig. 2. Hydrogen concentration c v (vol. fractions) vs 
time (sec) in the bottom zone of the flat-bottom cavity 
(z = 0). i) u = 2 m/sec, s = 0.3 m; 2) 1 m/sec, 0.3 m; 
3) 0.27 m/sec, 0.3 m; 4) 1 m/sec, 0.5 m; 5) 0.27 m/sec, 
0.5 m. For all the cavities d = 0.I m. 

to a pure diffusion process, for which an analytical solution exists under the following con- 
ditions (Fig. i). At time t = 0 gas B occupies the cavity, and gas A exists outside the cav- 
ity. Then mass transfer sets in between the cavity and the external volume. We assume here 
that the concentration of gas B in the external volume is equal to zero at all times. This 
condition is physically equivalent to having the external space move with a certain small 
velocity to the left or to the right. The process is now described by the diffusion equation 

Oc O~c - - - -  (1) 
OT O~ z 

The i n i t i a l  and bounda ry  c o n d i t i o n s  have  t h e  form 

at T-----0 for 0 ~ I  E=l; 

at T~0 for ~ 1 c=O. 

Under these conditions Eq. (I) has a general solution in the form of an infinite series: 

n~o 4 ( - -  1) " [--(2n-Jc-1)z~x2"~lcos(2nq-1)~ c = (2n + D-~ exp (2), 
= 4 2 

Since the series on the right-hand side of Eq. (2) converges rapidly, it can be restricted 
to the one term corresponding to n = 0 with sufficient accuracy for practical calculations. 
Taking into account the condition c = 1 at ~ = 0 and ~ = 0, we have 
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Fig. 3. Mass-transfer coefficient 8 (m/sec) vs velo- 
city u (m/sec). i) s = 0.3 m; 2) s = 0.5 m; 3, 4) 
theoretical values of 80 at small velocities u: 3) 
cavity depth s = 0.3 m; 4) 0.5 m. 

It is evident from Eq. (3) that the maximum concentration at each instant occurs in the 
bottom zone (~ = 0): 

Cmax = exp ( - -  ~-~--~T ) �9 (4)  

C o n s e q u e n t l y ,  Eq. (4)  d e s c r i b e s  t h e  v a r i a t i o n  o f  t h e  c o n c e n t r a t i o n  in  t h e  bot tom zone o f  
t h e  c a v i t y .  Inasmuch as  t h i s  c o n c e n t r a t i o n  i s  a maximum, i t  s e r v e s  as  a s u i t a b l e  c h a r a c t e r -  
i s t i c  p a r a m e t e r  o f  t h e  p r o c e s s .  We s h a l l  u se  o n l y  t h i s  c h a r a c t e r i s t i c  c o n c e n t r a t i o n  in  t h e  
e n s u i n g  c a l c u l a t i o n s .  We s h a l l  a l s o  drop t h e  s u b s c r i p t  "max".  

To study the influence of the flow velocity on the mass-transfer rate, we carried out 
experiments on the replacement of hydrogen by nitrogen in a cylindrical flat-bottom side 
cavity with an inside diameter of i00 mm and depths of 300 mm and 500 mm. The symmetry axis 
of the cavity was oriented perpendicular to the axis of the main conduit, which also had a 
diameter of 100 mm. The experimental procedure was as follows. After evacuation, the entire 
system was filled with hydrogen gas to a pressure just above atmospheric. The pressure was 
then equalized with the atmospheric pressure through a drainage line. Nitrogen gas began to 
flow from one end through the main conduit. The nitrogen--hydrogen mixture escaped into the 
atmosphere from the other end of the conduit. The temperatures of the hydrogen and the nitro- 
gen were 18-20~ The fast-reacting probe of a cooling-power gas analyzer [6] was built into 
the bottom of the flat-bottom cavity. The readings of the gas analyzer were plotted on a 
graphic recording instrument. The flat-bottom cavity was oriented with the bottom up in order 
to rule out the influence of buoyancy. The experiments yielded a family of curves of c v = f(t) 
(Fig. 2) for average nitrogen flow velocities in the conduit from 0.27 m/sec to 2 m/sec. 

The mass transfer between the flat-bottom cavity and the main-flow conduit is conveniently 
described on the basis of the concept of volumetric flow rate of one of the components across 
a conditional interface between the flat-bottom cavity and the conduit. By definition, 

dV ! jB = (5) 
s 

According to Fick's second law, 

iB=--iA, (6) 

i.e., the displaced volume of hydrogen is replaced by an equal volume of nitrogen. There is 
sufficient basis to assume that the volumetric flow of one of the components across the 
cavity--conduit interface is proportional to the difference between the concentrations of 
this component in the conduit and in the cavity. For component B 

]z=pc. (7) 

It is evident from Fig. 2 that after a certain time essentially all of component B 
(hydrogen) with a volume 

V~=lS (8) 

is expelled from the cavity. 

684 



19Sh 

,-5- 

y ; ) l z o~'r -o,3 Ig[Re: Sc l /d)  ] 

Fig. 4. Sherwood number vs Reynolds number. I) s = 0.3; 
2) s = 0.5 m; 3) theoretical Sherwood number Sh0 for 
small Re; 4) data of [4] for s = 0.5; 5) data of [5] 
for s = 0.4-2.0; the solid line is calculated accord- 
ing to Eq. (17), and the dashed line is calculated accord- 
ing to Eq. (16). 

According to Eq. (5), 

Vs = .i ]B Sdt. (9) 
o 

E q u a t i n g  t h e  r i g h t - h a n d  s i d e s  o f  Eqs .  (8 )  and (9)  and t a k i n g  Eq. (7 )  i n t o  a c c o u n t ,  we 
o b t a i n  t h e  e q u a t i o n  f o r  t h e  m a s s - t r a n s f e r  c o e f f i c i e n t  

l 

i cdt ( i0)  
o 

The c o e f f i c i e n t  ~ i s  d e t e r m i n e d  f rom t h e  e x p e r i m e n t a l  c u r v e s  o f  t h e  c o n c e n t r a t i o n  in  t h e  
bo t t om  zone  o f  t h e  c a v i t y  ( F i g .  2 ) .  For  t h i s  p u r p o s e  i t  i s  n e c e s s a r y  t o  d e t e r m i n e  g r a p h i c a l l y  
t h e  a r e a  u n d e r  t h e  c ( t )  c u r v e  and t o  c a l c u l a t e  t h e  c o e f f i c i e n t  g a c c o r d i n g  t o  Eq. ( 1 0 ) .  

A c c o r d i n g  t o  t h e  a n a l y t i c a l  e x p r e s s i o n  ( 4 ) ,  t h e  c o e f f i c i e n t  60 f o r  p u r e  d i f f u s i o n  mass 
t r a n s f e r  i s  

Po = . t ~ i D  ... 2.5 D 
~2 tD 4l l ( 1 1 )  

. [ e x p ( - - -  T l ~ ) dt 
0 

For  f l o w  in  t h e  c o n d u i t  w i t h  a s u f f i c i e n t l y  s m a l l  v e l o c i t y  t o  e s t a b l i s h  t h e  b o unda ry  
c o n d i t i o n s  u n d e r  which  t h e  s o l u t i o n  (4)  was o b t a i n e d ,  t h e  c o e f f i c i e n t  B + ~0. T h i s  c o n c l u s i o n  
i s  w e l l  c o r r o b o r a t e d  e x p e r i m e n t a l l y  ( F i g .  3 ) .  

These  r e s u l t s  can be e x t e n d e d  t o  any p a i r  o f  g a s e s  by d i m e n s i o n a l  a n a l y s i s  and s i m i l a r i t y  
t h e o r y .  The d i m e n s i o n l e s s  m a s s - t r a n s f e r  c o e f f i c i e n t  ~* = B/g0 i s  p r o p o r t i o n a l  t o  t h e  Sherwood 
number Sh = ~s A c c o r d i n g  t o  Eq. ( 1 1 ) ,  

Sh=2.5~*. ( 12 )  

The g e n e r a l  form o f  t h e  f u n c t i o n a l  d e p e n d e n c e  f o r  t h e  p a r a m e t e r s  c h a r a c t e r i z i n g  d i f f u -  
s i o n - c o n v e c t i o n  mass t r a n s f e r  be tween  t h e  f l a t - b o t t o m  c a v i t y  and t h e  c o n d u i t  i s  g i v e n  by t h e  
r e l a t i o n  

~=[(u, d, I, v, D). 

On the basis of the Buckingham's ~ theorem [7] we reduce Eq. (13) to the form 

~l =S h  = f(Re, Sc, l/d). 
D 

A c c o r d i n g  t o  Eq. ( 1 1 ) ,  f o r  s m a l l  v e l o c i t i e s  u 

(13) 

(14) 

Sho=  pol = 2 . 5 .  
D 

(15) 
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This theoretical result is well corroborated by the experimental data (Fig. 4). It is 
evident from Fig. 4 that for a generalized argument I = ReZ.2Sc~163 -~ ~ 10 4 

S h = S h o = 2 . 5 ;  (16) 

f o r  10" < X < 2 " i 0  5 

Sh=3 .16 .10 -4~ .  (17) 
Equations (16) and (17) can be used solve two different problems of mass transfer between 

a flat-bottom cavity and an external flow. The first problem is the expulsion of the sublimated 
component from the cavity. Its solution requires the substitution of the dimensionless param- 
eters in Eqs. (16) and (17). The second problem is the variation of the concentration in the 
cavity as one gas is replaced by the other. This problem is solved as follows. 

The volume-average concentration in the flat-bottom cavity is approximately equal to c/2. 
The volume occupied by component B at a given time is 

V,~ISlc .  
2 

According to this expression, 

dV = __I Sldc. 
2 

The simultaneous solution of Eqs. (5), (7), and (18) yields the relation 

(18) 

t -  1 Z lnY_O.., (19) 
2 ~ c 

or 

1 Z z 
t - -  -- In c~ �9 ( 2 0 )  

2 S h D  c 

We round out the foregoing discussion with some general remarks. Mass transfer between a 
flat-bottom cavity and an external flow does not depend on the geometry of the external duct. 
Appreciable intensification of mass transfer is observed for values of the dimensionless group 

= Rel.2Sc~163 -~ > 10 4 . For values of this group higher than 2"10 5 the mass-transfer 
coefficient increases at about half the rate [4, 5], so that mass-transfer processes are 
essentially useful for 10 4 < ~ < 2"I0 s 

NOTATION 

Re, Reynolds, number;Sh = 8s Sherwood number; Sc, Schmidt number; s depth of flat- 
bottom cavity; d, inside diameter of flat-bottom cavity; u, average flow velocity of gas in 
conduit; c, volume concentration; 8, mass-transfer coefficient; D, diffusion coefficient; 

= tD/s 2, dimensionless time; $ = z/s dimensionless coordinate; V, volume of flat-bottom 
cavity; S, cross section of flat-bottom cavity; JB, volumetric flow rate of gas B (hydrogen). 
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